Publications

Export 1304 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
J. Chen and Ying, M., Ancilla-Assisted Discrimination of Quantum Gates, 2008.
X. You, Chakrabarti, S., Chen, B., and Wu, X., Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels, 2023.
D. Hangleiter, Carolan, J., and Thébault, K. P. Y., Analogue Quantum Simulation: A New Instrument for Scientific Understanding. Springer Nature, 2022, pp. 83-102.
A. Rad, Schuckert, A., Crane, E., Nambiar, G., Fei, F., Wyrick, J., Silver, R. M., Hafezi, M., Davoudi, Z., and Gullans, M., Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon, 2024.
W. Chen, Beck, K. M., Bücker, R., Gullans, M., Lukin, M. D., Tanji-Suzuki, H., and Vuletic, V., All-Optical Switch and Transistor Gated by One Stored Photon, Science, vol. 341, no. 6147, pp. 768 - 770, 2013.
A. V. Gorshkov, Rey, A. Maria, Daley, A. J., Boyd, M. M., Ye, J., Zoller, P., and Lukin, M. D., Alkaline-Earth-Metal Atoms as Few-Qubit Quantum Registers, Physical Review Letters, vol. 102, no. 11, 2009.
D. Kafri and Taylor, J. M., Algorithmic Cooling of a Quantum Simulator, 2012.
Y. Peng, Ying, M., and Wu, X., Algebraic Reasoning of Quantum Programs via Non-Idempotent Kleene Algebra, 2021.
X. Song, Salvati, F., Gaikwad, C., Halpern, N. Yunger, Arvidsson-Shukur, D. R. M., and Murch, K., Agnostic Phase Estimation, Phys. Rev. Lett., vol. 132, p. 260801, 2024.
D. Maslov, On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization, Physical Review A, vol. 93, no. 2, p. 022311, 2016.
J. C. Bienfang, Clark, C. W., Williams, C. J., Hagley, E. W., and Wen, J., Advantages of high-speed technique for quantum key distribution; reply to quant-ph/0407050 , 2004.
A. Bapat, Childs, A. M., Gorshkov, A. V., and Schoute, E., Advantages and limitations of quantum routing, PRX Quantum, vol. 4, no. 010313, 2023.
V. Dunjko, Taylor, J. M., and Briegel, H. J., Advances in Quantum Reinforcement Learning, IEEE SMC, Banff, AB, pp. 282-287, 2017.
M. J. O'Hara and O'Leary, D. P., The adiabatic theorem in the presence of noise, Physical Review A, vol. 77, no. 4, 2008.
A. S. Sorensen, Altman, E., Gullans, M., Porto, J. V., Lukin, M. D., and Demler, E., Adiabatic preparation of many-body states in optical lattices, Physical Review A, vol. 81, no. 6, 2010.
M. Jarret and Jordan, S. P., Adiabatic optimization without local minima, Quantum Information and Computation, vol. 15, no. 3-4, pp. 181-199, 2015.
M. Jarret, Jordan, S. P., and Lackey, B., Adiabatic optimization versus diffusion Monte Carlo, Physical Review A, vol. 94, p. 042318, 2016.
K. Goral, Koehler, T., Gardiner, S. A., Tiesinga, E., and Julienne, P. S., Adiabatic association of ultracold molecules via magnetic field tunable interactions , Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 37, no. 17, pp. 3457 - 3500, 2004.
G. W. Alldredge, Hauck, C. D., O'Leary, D. P., and Tits, A. L., Adaptive change of basis in entropy-based moment closures for linear kinetic equations, Journal of Computational Physics, vol. 258, pp. 489 - 508, 2014.
S. P. Jordan, Kobayashi, H., Nagaj, D., and Nishimura, H., Achieving perfect completeness in classical-witness quantum Merlin-Arthur proof systems, Quantum Information and Computation, vol. 12, no. 5-6, pp. 461-471, 2012.
F. Setiawan, Gramolin, A. V., Matekole, E. S., Krovi, H., and Taylor, J. M., Accurate and Honest Approximation of Correlated Qubit Noise, 2023.
C. - L. Hong, Tsai, T., Chou, J. - P., Chen, P. - J., Tsai, P. - K., Chen, Y. - C., Kuo, E. - J., Srolovitz, D., Hu, A., Cheng, Y. - C., and Goan, H. - S., Accurate and Efficient Quantum Computations of Molecular Properties Using Daubechies Wavelet Molecular Orbitals: A Benchmark Study against Experimental Data, PRX Quantum, vol. 3, p. 020360, 2022.
S. Xu and Swingle, B., Accessing scrambling using matrix product operators, Nature Physics , vol. 16, no. 2, pp. 199-204, 2020.
P. Alsing, Battle, P., Bienfang, J. C., Borders, T., Brower-Thomas, T., Carr, L. D., Chong, F., Dadras, S., DeMarco, B., Deutsch, I., Figueroa, E., Freedman, D., Everitt, H., Gauthier, D., Johnston-Halperin, E., Kim, J., Kira, M., Kumar, P., Kwiat, P., Lekki, J., Loiacono, A., Lončar, M., Lowell, J. R., Lukin, M., Merzbacher, C., Miller, A., Monroe, C., Pollanen, J., Pappas, D., Raymer, M., Reano, R., Rodenburg, B., Savage, M., Searles, T., and Ye, J., Accelerating Progress Towards Practical Quantum Advantage: The Quantum Technology Demonstration Project Roadmap, 2023.
D. Wang, Higgott, O., and Brierley, S., Accelerated Variational Quantum Eigensolver, Phys. Rev. Lett. , vol. 122, no. 140504 , 2019.