Publications

Export 1304 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
S. B. Nicholson, García-Pintos, L. Pedro, del Campo, A., and Green, J. R., Time-information uncertainty relations in thermodynamics, Nat. Phys., 2020.
P. Faist, Woods, M. P., Albert, V. V., Renes, J. M., Eisert, J., and Preskill, J., Time-energy uncertainty relation for noisy quantum metrology, PRX Quantum, vol. 4(4), no. 040336, 2023.
A. M. Childs, Jeffery, S., Kothari, R., and Magniez, F., A Time-Efficient Quantum Walk for 3-Distinctness Using Nested Updates, 2013.
D. W. Berry, Childs, A. M., Su, Y., Wang, X., and Wiebe, N., Time-dependent Hamiltonian simulation with L1-norm scaling, Quantum, vol. 4, no. 254, 2020.
D. An, Fang, D., and Lin, L., Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and Superconvergence for Schrödinger Equation, Quantum, vol. 6, p. 690, 2022.
S. S. Bullock, Brennen, G. K., and O'Leary, D. P., Time Reversal and n-qubit Canonical Decompositions, Journal of Mathematical Physics, vol. 46, no. 6, p. 062104, 2005.
Á. M. Alhambra, Riddell, J., and García-Pintos, L. Pedro, Time evolution of correlation functions in quantum many-body systems, Phys. Rev. Lett, vol. 124, no. 110605, 2020.
A. Deshpande, Fefferman, B., Gorshkov, A. V., Gullans, M., Niroula, P., and Shtanko, O., Tight bounds on the convergence of noisy random circuits to uniform, 2021.
P. Niroula, Gopalakrishnan, S., and Gullans, M., Thresholds in the Robustness of Error Mitigation in Noisy Quantum Dynamics, 2023.
S. Chakrabarti, Krishnakumar, R., Mazzola, G., Stamatopoulos, N., Woerner, S., and Zeng, W. J., A Threshold for Quantum Advantage in Derivative Pricing, Quantum, vol. 5, p. 463, 2021.
Y. - Y. Liu, Stehlik, J., Eichler, C., Mi, X., Hartke, T. R., Gullans, M., Taylor, J. M., and Petta, J. R., Threshold Dynamics of a Semiconductor Single Atom Maser, Physical Review Letters, vol. 119, no. 9, p. 097702, 2017.
W. Shirley, Chen, Y. - A., Dua, A., Ellison, T. D., Tantivasadakarn, N., and Williamson, D. J., Three-dimensional quantum cellular automata from chiral semion surface topological order and beyond, 2022.
A. V. Gorshkov, Thesis: Novel Systems and Methods for Quantum Communication, Quantum Computation, and Quantum Simulation, Harvard University Physics Department, vol. Ph.D. Thesis, 2010.
S. Ragole, Xu, H., Lawall, J., and Taylor, J. M., Thermodynamic limits for optomechanical systems with conservative potentials, Physical Review B, vol. 96, no. 18, p. 184106, 2017.
R. Perlner and Liu, Y. - K., Thermodynamic Analysis of Classical and Quantum Search Algorithms, 2017.
M. Ali Aamir, Suria, P. Jamet, Guzmán, J. Antonio Ma, Castillo-Moreno, C., Epstein, J. M., Halpern, N. Yunger, and Gasparinetti, S., Thermally driven quantum refrigerator autonomously resets superconducting qubit, 2023.
J. Steinberg and Swingle, B., Thermalization and chaos in QED3, Phys. Rev. D , vol. 99, no. 076007, 2019.
A. Seif, DeGottardi, W., Esfarjani, K., and Hafezi, M., Thermal management and non-reciprocal control of phonon flow via optomechanics, Nat. Commun., vol. 9(1), no. 1207, 2018.
A. M. Childs, Su, Y., Tran, M. C., Wiebe, N., and Zhu, S., Theory of Trotter Error with Commutator Scaling, Phys. Rev. X, vol. 11, no. 1, p. 49, 2021.
D. An, Liu, J. - P., Wang, D., and Zhao, Q., A theory of quantum differential equation solvers: limitations and fast-forwarding, 2023.
D. An, Liu, J. - P., Wang, D., and Zhao, Q., A theory of quantum differential equation solvers: limitations and fast-forwarding, 2022.
B. J. Weber, Kalantre, S. S., McJunkin, T., Taylor, J. M., and Zwolak, J. P., Theoretical bounds on data requirements for the ray-based classification, SN Comput. Sci., vol. 3, no. 57, 2022.
F. W. Strauch and Williams, C. J., Theoretical analysis of perfect quantum state transfer with superconducting qubits , Physical Review B, vol. 78, no. 9, 2008.
D. Carney, Müller, H., and Taylor, J. M., Testing quantum gravity with interactive information sensing, 2021.
A. D. Bookatz, Jordan, S. P., Liu, Y. - K., and Wocjan, P., Testing quantum expanders is co-QMA-complete, Physical Review A, vol. 87, no. 4, 2013.