Universal Subspaces for Local Unitary Groups of Fermionic Systems

TitleUniversal Subspaces for Local Unitary Groups of Fermionic Systems
Publication TypeJournal Article
Year of Publication2015
AuthorsChen, L, Chen, J, Djokovic, DZ, Zeng, B
JournalCommunications in Mathematical Physics
Volume333
Issue2
Pages541 - 563
Date Published2014/10/10
Abstract

Let $\mathcal{V}=\wedge^N V$ be the $N$-fermion Hilbert space with
$M$-dimensional single particle space $V$ and $2N\le M$. We refer to the
unitary group $G$ of $V$ as the local unitary (LU) group. We fix an orthonormal
(o.n.) basis $\ket{v_1},...,\ket{v_M}$ of $V$. Then the Slater determinants
$e_{i_1,...,i_N}:= \ket{v_{i_1}\we v_{i_2}\we...\we v_{i_N}}$ with
$i_1<...3. If $M$ is even, the well known BCS states are not LU-equivalent to any
single occupancy state. Our main result is that for N=3 and $M$ even there is a
universal subspace $\cW\subseteq\cS$ spanned by $M(M-1)(M-5)/6$ states
$e_{i_1,...,i_N}$. Moreover the number $M(M-1)(M-5)/6$ is minimal.

URLhttp://arxiv.org/abs/1301.3421v2
DOI10.1007/s00220-014-2187-6
Short TitleCommun. Math. Phys.