Stationary Phase Method in Discrete Wigner Functions and Classical Simulation of Quantum Circuits

TitleStationary Phase Method in Discrete Wigner Functions and Classical Simulation of Quantum Circuits
Publication TypeJournal Article
Year of Publication2018
AuthorsKocia, L, Love, P
Abstract

We apply the periodized stationary phase method to discrete Wigner functions of systems with odd prime dimension using results from p-adic number theory. We derive the Wigner-Weyl-Moyal (WWM) formalism with higher order ℏ corrections representing contextual corrections to non-contextual Clifford operations. We apply this formalism to a subset of unitaries that include diagonal gates such as the π8 gates. We characterize the stationary phase critical points as a quantum resource injecting contextuality and show that this resource allows for the replacement of the p2t points that represent t magic state Wigner functions on p-dimensional qudits by ≤pt points. We find that the π8 gate introduces the smallest higher order ℏ correction possible, requiring the lowest number of additional critical points compared to the Clifford gates. We then establish a relationship between the stabilizer rank of states and the number of critical points necessary to treat them in the WWM formalism. This allows us to exploit the stabilizer rank decomposition of two qutrit π8 gates to develop a classical strong simulation of a single qutrit marginal on t qutrit π8 gates that are followed by Clifford evolution, and show that this only requires calculating 3t2+1 critical points corresponding to Gauss sums. This outperforms the best alternative qutrit algorithm (based on Wigner negativity and scaling as ∼30.8t for 10−2 precision) for any number of π8 gates to full precision.

URLhttps://arxiv.org/abs/1810.03622