Title | Quantum Lego Expansion Pack: Enumerators from Tensor Networks |
Publication Type | Journal Article |
Year of Publication | 2023 |
Authors | Cao, CJ, Gullans, M, Lackey, B, Wang, Z |
Date Published | 8/9/2023 |
Abstract | We provide the first tensor network method for computing quantum weight enumerator polynomials in the most general form. As a corollary, if a quantum code has a known tensor network construction of its encoding map, our method produces an algorithm that computes its distance. For non-(Pauli)-stabilizer codes, this constitutes the current best algorithm for computing the code distance. For degenerate stabilizer codes, it can provide up to an exponential speed up compared to the current methods. We also introduce a few novel applications of different weight enumerators. In particular, for any code built from the quantum lego method, we use enumerators to construct its (optimal) decoders under any i.i.d. single qubit or qudit error channels and discuss their applications for computing logical error rates. As a proof of principle, we perform exact analyses of the deformed surface codes, the holographic pentagon code, and the 2d Bacon-Shor code under (biased) Pauli noise and limited instances of coherent error at sizes that are inaccessible by brute force. |
URL | https://arxiv.org/abs/2308.05152 |