Exponential iterated integrals and the relative solvable completion of the fundamental group of a manifold

TitleExponential iterated integrals and the relative solvable completion of the fundamental group of a manifold
Publication TypeJournal Article
Year of Publication2005
AuthorsMiller, C
JournalTopology
Volume44
Issue2
Pages351 - 373
Date Published2005/03/01
ISSN00409383
Abstract

We develop a class of integrals on a manifold M called exponential iterated integrals  , an extension of K.T. Chen's iterated integrals. It is shown that the matrix entries of any upper triangular representation of π1(M,x) can be expressed via these new integrals. The ring of exponential iterated integrals contains the coordinate rings for a class of universal representations, called the relative solvable completions   of π1(M,x). We consider exponential iterated integrals in the particular case of fibered knot complements, where the fundamental group always has a faithful relative solvable completion.

URLhttp://www.sciencedirect.com/science/article/pii/S0040938304000795
DOI10.1016/j.top.2004.10.005
Short TitleTopology