Title | Co-Designing a Scalable Quantum Computer with Trapped Atomic Ions |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Brown, KR, Kim, J, Monroe, C |
Date Published | 2016/02/09 |
Abstract | The first generation of quantum computers are on the horizon, fabricated from quantum hardware platforms that may soon be able to tackle certain tasks that cannot be performed or modelled with conventional computers. These quantum devices will not likely be universal or fully programmable, but special-purpose processors whose hardware will be tightly co-designed with particular target applications. Trapped atomic ions are a leading platform for first generation quantum computers, but are also fundamentally scalable to more powerful general purpose devices in future generations. This is because trapped ion qubits are atomic clock standards that can be made identical to a part in 10^15, and their quantum circuit connectivity can be reconfigured through the use of external fields, without modifying the arrangement or architecture of the qubits themselves. In this article we show how a modular quantum computer of any size can be engineered from ion crystals, and how the wiring between ion trap qubits can be tailored to a variety of applications and quantum computing protocols. |
URL | http://arxiv.org/abs/1602.02840 |