Title | 3-manifold diagrams and NP vs P |
Publication Type | Journal Article |
Year of Publication | 2017 |
Authors | Alagic, G, Lo, C |
Journal | Quantum Information & Computation |
Volume | 17 |
Issue | (1{\&}2) |
Pages | 125-141 |
Abstract | The computational complexity class #P captures the di_culty of counting the satisfying assignments to a boolean formula. In this work, we use basic tools from quantum computation to give a proof that the SO(3) Witten-Reshetikhin-Turaev (WRT) invariant of 3-manifolds is #P-hard to calculate. We then apply this result to a question about the combinatorics of Heegaard splittings, motivated by analogous work on link diagrams by M. Freedman. We show that, if #P ⊆ FPNP, then there exist infinitely many Heegaard splittings which cannot be made logarithmically thin by local WRT-preserving moves, except perhaps via a superpolynomial number of steps. We also outline two extensions of the above results. First, adapting a result of Kuperberg, we show that any presentation-independent approximation of WRT is also #P-hard. Second, we sketch out how all of our results can be translated to the setting of triangulations and Turaev-Viro invariants. |
URL | https://dl.acm.org/doi/abs/10.5555/3179483.3179491 |